Journal of Organometallic Chemistry, 191 (1980) 283–293 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

KOMPLEXE MIT KOHLENSTOFFSULFIDEN UND -SELENIDEN ALS LIGANDEN

IV *. EIN- UND ZWEIKERNIGE RHODIUM-CS₂-KOMPLEXE UND KRISTALLSTRUKTUR EINES RhSCSC-HETEROCYCLUS **

H. WERNER^{*}, O. KOLB, R. FESER,

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

und ULRICH SCHUBERT

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-8046 Garching (B.R.D.)

(Eingegangen den 23. Oktober 1979)

Summary

The complexes $C_5H_5Rh(PMe_3)CS_2$ (II) and $C_5H_5Rh(PMe_2Ph)CS_2$ (III) are formed in excellent yields in the reaction of $C_5H_5Rh(C_2H_4)PR_3$ ($PR_3 = PMe_3$, PMe_2Ph) with CS_2 in benzene. The CS_2 ligand in II and III is *dihapto*-bonded and at least in III is rigid. II reacts with $Cr(CO)_5THF$ and $C_5H_5Mn(CO)_2THF$ to give the binuclear complexes $C_5H_5(PMe_3)Rh(SCS)Cr(CO)_5$ (IV) and C_5H_5 -(PMe_3) $Rh(SCS)Mn(CO)_2C_5H_5$ (V) in which the CS_2 molecule bridges two different metal atoms. In the reaction of $C_5H_5Rh(C_2H_4)PMe_3$ and CS_2 under certain conditions a second product $C_5H_5Rh(PMe_3)C_2S_4$ (VI) is formed. The crystal structure shows that in this complex a five-membered RhSCSC heterocyclic ring is present.

Zusammenfassung

Durch Reaktion von $C_5H_5Rh(C_2H_4)PR_3$ (PR₃ = PMe₃, PMe₂Ph) und CS₂ in Benzol entstehen in sehr guter Ausbeute die Komplexe $C_5H_5Rh(PMe_3)CS_2$ (II) und $C_5H_5Rh(PMe_2Ph)CS_2$ (III). Der CS₂-Ligand in II und III ist *dihapto*-gebunden und, zumindest in III, starr fixiert. II reagiert mit Cr(CO)₅THF und C_5H_5Mn -(CO)₂THF zu den Zweikernkomplexen $C_5H_5(PMe_3)Rh(SCS)Cr(CO)_5$ (IV) und $C_5H_5(PMe_3)Rh(SCS)Mn(CO)_2C_5H_5$ (V), in denen das CS₂-Molekül zwei unter-

* Für III. Mitteilung siehe Ref. 1.

^{**} Herrn Professor Dr. Ing. Helmut Behrens zu seinem 65. Geburtstag am 30. Mai 1980 gewidmet.

schiedliche Metallatome verbrückt. Bei der Reaktion von $C_5H_5Rh(C_2H_4)PMe_3$ und CS_2 bildet sich unter bestimmten Bedingungen neben II auch C_5H_5Rh - $(PMe_3)C_2S_4$ (VI). Die Kristallstruktur zeigt, dass in diesem Komplex ein fünfgliedriger RhSCSC-Metallaheterocyclus vorliegt.

Einführung

Im Rahmen unserer Arbeiten über die Chemie Lewis-basischer Metallkomplexe haben wir kürzlich auch über die Synthese und Kristallstruktur von $C_5H_5Co(PMe_3)CS_2$ (I) berichtet [2]. Diese Verbindung ist hinsichtlich ihrer Reaktivität sehr bemerkenswert: Sie reagiert mit Elektrophilen wie z.B. $[OMe_3]^+$ [3], $Cr(CO)_5$ und $Mn(CO)_2C_5H_5$ [2] sehr bereitwillig unter Addition des Elektrophils an das exocyclische Schwefelatom des *dihapto*-gebundenen CS₂-Liganden, ist jedoch im Gegensatz zu Metall-CS₂-Komplexen wie C_5H_5Mn - $(CO)_2CS_2$, $ArCr(CO)_2CS_2$ etc. [4] gegenüber PPh₃ und anderen Schwefel-abstrahierenden Reagenzien weitgehend inert [3]. Die Reaktion von I mit C_5H_5 - $(PMe_3)Co(\mu-CO)_2Mn(CO)C_5H_4R$ [5] führt in sehr guten Ausbeuten zu $(C_5H_5Co)_3$ -(CS)(S), dem ersten Metallcluster mit einer μ_3 -Thiocarbonylbrücke [1,6].

Vor allem die bisher erhaltenen Ergebnisse über die Reaktivität von I veranlassten uns, auch den entsprechenden Rhodiumkomplex $C_5H_5Rh(PMe_3)CS_2$ darzustellen und sein Verhalten gegenüber Elektrophilen und Nucleophilen zu untersuchen. Wir berichten hier über die Synthese von $C_5H_5Rh(PMe_3)CS_2$, über die Bildung und Struktur eines als Nebenprodukt erhaltenen neuartigen Metallaheterocyclus sowie über Zweikernkomplexe $C_5H_5(PMe_3)Rh(CS_2)ML_n$ mit verbrückenden CS_2 -Liganden.

Ergebnisse

Die Kobaltkomplexe $C_5H_5Co(PR_3)_2$ reagieren bereits bei Raumtemperatur (R = Ph [7], Me [2]) mit CS₂ zu $C_5H_5Co(PR_3)CS_2$ (R = Me, Ph). Die entsprechende Umsetzung von $C_5H_5Rh(PPh_3)_2$ mit CS₂ in Benzol erfordert demgegenüber viertägiges Erhitzen im Bombenrohr; die Ausbeute an $C_5H_5Rh(PPh_3)CS_2$ beträgt auch dann nur 21% [8]. In Anbetracht dieses zuletzt genannten Ergebnisses überrascht es nicht, dass der von uns in jüngster Zeit beschriebene Komplex $C_5H_5Rh(PMe_3)_2$ [9] keine ideale Ausgangsverbindung für die Synthese von $C_5H_5Rh(PMe_3)CS_2$ (II) ist; die Reaktion mit CS₂ in Ether bei Raumtemperatur ergibt lediglich eine Ausbeute an II von 11% [10].

Sehr viel besser als $C_5H_5Rh(PMe_3)_2$ ist der Ethylen-Komplex C_5H_5Rh -(C_2H_4)PMe₃ [11] für die Synthese von II geeignet. Nach 6-stündigem Rühren einer Benzollösung von $C_5H_5Rh(C_2H_4)PMe_3$ und CS_2 bei 50°C erhält man nach Gl. 1 fast quantitativ das gewünschte Produkt.

II bildet tiefrote, fast schwarze Kristalle, die luftbeständig und thermisch bis ca. 120°C stabil sind. Die spektroskopischen Daten (Tab. 1) sind denen des entsprechenden Kobaltkomplexes I [2] sehr ähnlich.

Die Frage, ob das CS₂-Molekül in II starr gebunden ist oder, wie in $C_5H_5Mn-(CO)_2CS_2$ [12], eine gehinderte Rotation um die Achse der Metall—CS₂-Bindung ausführt, lässt sich an Hand der erhaltenen spektroskopischen Daten nicht beantworten. Eine Entscheidung ist jedoch im Fall des zu II analogen Dimethylphenylphosphan-Komplexes C₅H₃Rh(PMe₂Ph)CS₂ (III) möglich, der aus C₅H₅Rh-(C₂H₄)PMe₂Ph und CS₂ glatt zugänglich ist. Da (eine *dihapto*-Koordination des Kohlenstoffdisulfids vorausgesetzt) das Rhodiumatom in III ein Chiralitätszentrum ist, sind die Methylgruppen am Phosphor diastereotop und ergeben ein Achtlinienspektrum, d.h. zwei Dubletts von Dubletts. Dieses Spektrum (in Aceton- d_6) ändert sich zwischen —64 und +51°C nicht, so dass für diesen Temperaturbereich eine starre Struktur belegt ist. Für den Komplex Pt(PPh₃)₂CS₂ wurde kürzlich ebenfalls eine starre Anordnung der M—CS₂-Einheit durch ¹³C-NMR-Messungen bewiesen [13].

Gegenüber Elektrophilen wie $Cr(CO)_5$ und $Mn(CO)_2C_5H_5$ verhält sich II ganz analog wie der Kobaltkomplex $C_5H_5Co(PMe_3)CS_2$ [2]. Gemäss Gl. 2 erhält man in guten Ausbeuten die Zweikernkomplexe IV und V, in denen der CS_2 -Ligand eine Brücke zwischen 2 verschiedenen Metallatomen bildet.

 $(\mathrm{I} \Sigma : \mathrm{ML}_{n} = \mathrm{Cr}(\mathrm{CO})_{5};$ $\Sigma : \mathrm{ML}_{n} = \mathrm{Mn}(\mathrm{CO})_{2}\mathrm{C}_{5}\mathrm{H}_{5};$

Es gibt keine Hinweise darauf, dass V eine fluktuierende Struktur, wie sie für die ähnlich gebaute Verbindung $[C_{5}H_{5}(CO)_{2}Mn]_{2}(\mu$ -CS₂) nachgewiesen ist [12], besitzt.

Trotz angestrengter Bemühungen ist es uns bisher nicht gelungen, ausgehend von II den zu $(C_5H_3CO)_3(CS)(S)$ analogen Cluster $(C_5H_5Rh)_3(CS)(S)$ zu synthetisieren [1]. Bei der Reaktion von II sowohl mit $C_5H_5(PMe_3)Rh(\mu-CO)_2Mn (CO)C_5H_4Me$ [10] als auch mit $C_5H_5Rh(C_2H_4)PMe_3$ (jeweils im Molverhältnis 1/2) bildet sich nicht der gewünschte Dreikernkomplex; bei der zuerst genannten Umsetzung lässt sich nach 2-tägigem Erhitzen auf 60°C lediglich eine geringe Menge an $C_5H_5Rh(CO)PMe_3$ in der Lösung nachweisen [3]. Die bisherigen Beobachtungen (auch bei den Versuchen zur Darstellung von $C_5H_5Rh(CS)PR_3$ aus II) deuten darauf hin, dass die Rhodium— CS_2 -Bindung in $C_5H_5Rh(PMe_3)CS_2$ kinetisch sehr stabil ist und der CS_2 -Ligand wenig Neigung verspürt, in ein koordiniertes CS-Molekül überzugehen.

TABELLE 1

IR- UND ¹H-NMR-DATEN DER KOMPLEXE II—VI

Komplex	IR		NMR ^a						
	v(CO) b (cm ⁻¹)	ν(C=S) c (cm ⁻¹)	δ (C ₅ H ₅) (ppm)	J(PH) (Hz)	J(RhH) (Hz)	δ (PCH ₃) (ppm)	J(PH) (Hz)	J(RhH) (Hz)	Solvens
п		1169	6.37	0.8	1.3	1.45	11.0	1.0	Actond6
III		1171	5,18	0.8	1.3	1.59 ^c	10.0	1.1	Acetond ₆
						1.75	10.0	1.1	
21	2057, 1973, 1933, 1901	1163	5.60	0.7	1.4	1.45	11.0	1.0	Aceton-d ₆
>	1920, 1859	1166	6.42 7	0.7	1.4	1.50	11.2	1.0	Aceton-d 6
IV		Ø	5.65	0.5	1.3	1.67	11.9	0.0	DMSO-46
a Alle Signa	le erscheinen als Dubletts von	Dubletta b In	THE-L'Asing	C In Nutur	d Bandan	im Douolah J	-1-11 -0		

^{- And} Signal der PC6H5-Protonen die Jubietts von Jubietts. ^v in Tirk-Lösung. ^v in Nujol. ^a Banden im Bereich der CS-Valenzschwingungen bei 1060, 1039, 1000 und 911 em^{-1,e} Signal der PC6H5-Protonen bei § 7,37–8,07 (m) ppm.⁴ Signal der C5H5Mn-Protonen bei § 4.48 (s) ppm.

•

•

,

Eine interessante Beobachtung machten wir, als wir die Reaktion von $C_5H_5Rh-(C_2H_4)PMe_3$ mit CS₂ unter etwas veränderten Bedingungen als zunächst für die Darstellung von II gewählt durchführten. Es entsteht hierbei neben II in geringerer Ausbeute (~10%) noch ein zweites Produkt VI, dessen Elementaranalyse und Massenspektrum sehr gut der Zusammensetzung $C_5H_5Rh(PMe_3)C_2S_4$ entsprechen. Die hellroten luftbeständigen Kristalle lösen sich im Gegensatz zu II schlecht in Benzol, sind jedoch in CH₂Cl₂ und DMSO gut löslich. Da die IRund NMR-Spektren (siehe Tab. 1) keine Entscheidung darüber zulassen, in welcher Form das Rhodium an das C_2S_4 -Fragment gebunden ist, haben wir eine Kristallstrukturanalyse durchgeführt, die das Vorliegen eines RhSCSC-Metallaheterocyclus bestätigt.

Aufklärung und Beschreibung der Struktur von VI

Ein Kristall, der durch langsames Abkühlen einer mit Ether überschichteten Lösung von VI in CH₂Cl₂ erhalten wurde, wurde in einer Atmosphäre von trockenem Stickstoff in ein Mark-Röhrchen eingeschmolzen. Die Bestimmung der Zellkonstanten (s. Tabelle 2) und die Intensitätsmessungen (ω -scan, $\Delta \omega =$ 0.9°, 2285 unabhängige Reflexe, 2° $\leq 2\theta \leq 48°$) wurden auf einem automati-

Fig. 1. Eine Ansicht von VI. Die Wasserstoffatome sind der besseren Uebersichtlichkeithalber night gezeichnet.

KRISTALLDATEN ^a					
Summenformel (Molekulargewicht)	C ₁₀ H ₁₄ RhS ₄ P (396.4)				
Paumgruppe (Moleküle/Zelle)	$P2_{1}/c$ (4)				
Zellkonstanten: a, b, c	770.5(6), 1473.1(9), 1369.9(13) pm				
β	110.64(6)°				
v	$1455 \times 10^6 \mathrm{pm}^3$				
Dichte (berechnet)	1.81g/cm^3				
Linearer Absorpt. koeff. μ (Mo- K_{α})	17.6 cm ⁻¹				

^a Mo- K_{α} (Graphit-Monochromator, λ 71.069 pm).

schen Vierkreisdiffraktometer Syntex P2₁ mit Hilfe von Mo- K_{α} -Strahlung (Graphit-Monochromator, λ 71.069 pm) durchgeführt. Nach Lorentz- und Polarisationskorrektur wurden 1681 Strukturfaktoren mit $F_0 \ge 4.5 \sigma(F_0)$ erhalten. Die Lösung der Struktur erfolgte konventionell; die Verfeinerung nach der Methode der kleinsten Quadrate mit der vollständigen Matrix konvergierte gegen $R_1 = 0.069$ und $R_2 = 0.074$. Aus Tabelle 3 sind die Atomparameter von VI, aus Tabelle 4 die wichtigsten intramolekularen Abstände und Winkel zu entnehmen. Figur 1 zeigt eine Ansicht von VI.

Das Rhodiumatom in VI ist durch den Cyclopentadienyl-Rest, den Trimethylphosphin-Liganden und den C(S)—S—C(S)—S-Chelatliganden quasi-oktaedrisch koordiniert; die Bindungswinkel S(1)—Rh—C(2), S(1)—Rh—P und C(2)—Rh—P weichen nur wenig von 90° ab. Rhodium—Phosphor-Bindungslängen schwanken je nach Art des *trans*-ständigen Liganden zwischen 225 und 240 pm. Mit 225.5 pm liegt der Rh—P-Abstand in VI an der unteren Grenze dieses Bereichs und ist gegenüber einem ähnlich gebauten Rhodacyclopentadien mit Triphenylphosphin als Ligand (Rh—P 229.3 pm [18]) erwartungsgemäss verkürzt.

Im RhSCSC-Heterocyclus von VI sind die Atome C(1), C(2), S(1) und S(4) innerhalb der Standardabweichungen koplanar, das Rhodium-Atom befindet sich nur 20 pm über der aus diesen Atomen gebildeten besten Ebene. Rh— C_{sp}^{2-} Einfachbindungsabstände sind wegen der oft anzutreffenden Verkürzung durch π -Bindungsanteile meist nicht ohne weiteres miteinander vergleichbar. Geht man jedoch von den längsten bisher gefundenen Rh— C_{sp}^{3-} Bindungslängen aus (208 pm in (Ph₃P)₂I₂RhCH₃ [19] und (π -C₅H₅)(CO)IRhC₂F₅ [20]), dann ergibt sich unter Berücksichtigung der Differenz zwischen den Radien sp^{3-} und sp^{2-} hybridisierter Kohlenstoffe, dass die Rh—C(2)-Bindung in VI eine möglicherweise sogar etwas aufgeweitete Einfachbindung ist.

Die Abschätzung, ob die Rh—S(1)-Bindung in VI π -Bindungsanteile enthält fällt schwer, wie allgemein bei Bindungen zwischen Übergangsmetallen und Elementen der 3. Periode. Ausserdem stammen fast alle bekannten Rh—S-Abstände in metallorganischen Verbindungen (227—237 pm, [15,21—24]) aus Komplexen, in denen die Rh—S-Bindung Teil eines prinzipiell zur Mesomerie befähigten Fünfringes ist und ausserdem von *trans*-ständigen Liganden beeinflusst wird. Die Rh—S(1)-Bindungslänge von 230.9 pm entspricht zwar der in einem analog gebauten 1-Rhoda-2-thiacyclopentadien (229 pm [15]), doch sollte man für eine reine Einfachbindung einen etwas grösseren Wert (etwa 240 pm) erwarten. Dieser lässt sich abschätzen, wenn man davon ausgeht, dass Rh—C(2) eine Einfachbin-

TABELLE 2

6 2	
A	
3	
1	
ΑB	
E	

ATOMPARAMETER Für die Wassentoffatome wurden konstante isotope Temperaturfaktoren (B = 6.0) verwendet. Der Temperaturfaktor T ist gegeben durch:

$T = 0 \times p[$	$-\hat{4}(h^2a^{*2}B_{11}$	+ h ² b ^{*2} B ₂₂ + l ² c	*2B33 + 2hka*b*	$B_{12} + 2hla^{+}c$	$B_{13} + 2klb^{*}c$	* ⁸ 23].				1
Atom	x /a	y/b	z c	B 11	B 22	B 33	B 12	B13	B_{23}	1
Rh	0.0088(2)	0.22984(7)	0.09955(8)	2.54(4)	2.79(4)	3.49(5)	0.05(4)	1.03(3)	-0.08(5)	
C(3)	-0.048(4)	0.126(1)	-0.022(1)	8.4(14)	3,4(8)	5.5(10)	-0.2(9)	1.9(10)	-0.8(7)	
C(4)	-0.128(3)	0.096(1)	0.046(2)	4.9(10)	1.8(7)	11.6(16)	-1.1(6)	2.9(11)	-1.9(8)	
C(5)	0.001(3)	0.0831(9)	0.144(1)	8.0(12)	1.5(6)	5.4(9)	0.4(6)	3.8(9)	0.5(5)	
C(6)	0.176(2)	0.103(1)	0.130(2)	3.7(9)	3.6(8)	7.9(12)	2.2(7)	0.0(9)	-0.7(8)	
c(1)	0.140(3)	0.126(1)	0.029(2)	8.2(14)	2.6(8)	11.5(17)	-0.3(8)	7.7(14)	-1.7(9)	
5	-0.2551(5)	0.3007(2)	0.0920(3)	3.2(2)	2.4(1)	3.5(2)	0.3(1)	1.1(1)	-0.4(1)	
C(10)	-0.243(2)	0.4154(9)	0.139(1)	3.1(7)	3.3(7)	6.5(9)	0.5(6)	2.4(7)	-1.1(6)	
C(11)	-0.371(2)	0.2442(9)	0.166(1)	3.9(7)	3.4(8)	8.7(11)	0.0(6)	3.8(8)	0.3(7)	
C(12)	0.424(2)	0.310(1)	-0.037(1)	2.9(7)	8.6(11)	4.9(9)	1.6(7)	0.6(7)	0.2(8)	
S(1)	0.1706(5)	0.2956(3)	0.2587(3)	3.0(2)	4.7(2)	3.3(2)	-0.8(1)	0.6(1)	-0.4(1)	
C(1)	0.268(2)	0.3902(9)	0.231(1)	2.1(6)	3.9(6)	4.6(7)	0.4(5)	1.6(6)	-0.8(6)	
S(2)	0.4161(6)	0.4662(3)	0.3246(4)	3.5(2)	5.6(2)	7.8(3)	-1.4(2)	1.0(2)	2.9(2)	
S(3)	0.0060(7)	0.3552(3)	-0.0961(4)	6.7(3)	4.6(2)	4.3(2)	0.4(2)	2.6(2)	1.0(2)	
C(2)	0.071(2)	0.3425(9)	0.033(1)	3.4(7)	4.0(7)	4.0(7)	1.5(6)	2.8(6)	1.1(6)	
S(4)	0.2177(6)	0.4225(3)	0.1037(3)	3.7(2)	2.9(2)	6.1(2)	-0.3(1)	2.5(2)	0.0(2)	
Wassersto	offatome		Wass	erstoffatome						1
Atom	x/a	y/bz/c	Aton	n x/a	9/b	z c				1
H(3)	-0.111	0.144 -0.0	093 H(10	E.0 (E)	20 0.433	0.147				t I
H(4)	-0.258	0.088 0.0	026 H(11	1) -0.4	74 0.278	0.169				
H(5)	-0.019	0.066 0.1	207 H(11	2) -0.2	88 0.235	0.238				
H(6)	0.301	0.102 0.1	182 H(11	.3)0.4	15 0.180	0.131				
H(7)	0.234	0.138 -0.(D01 H(12	1) -0.4	53 0.249	-0.065				
H(101)	-0.254	0.422 0.5	207 H(12	2) -0.3	69 0.341	-0.080			•	
H(102)	-0.326	0.458 0.(094 H(12	23) -0.5	40 0.338	-0.047				

dung ist und zu dem dafür gefundenen Abstand die Differenz der kovalenten Radien von S und C_{sp^2} addiert.

Die nahezu gleich langen C-S-Abstände und die Planarität des Chelatliganden (die auch die exocyclischen Schwefelatome S(2) und S(3) in guter Näherung einschliesst) beweisen, dass die π -Elektronen über alle Kohlenstoff- und Schwefelatome delokalisiert sind. Die C-S-Bindungslängen sind deutlich kürzer als für C-S-Einfachbindungen zu erwarten ist und selbst als bei Heterocyclen wie Thiophen (C-S 171.4 pm [25]) beobachtet wurde.

Eine Beteiligung der Rh—C(2)-Bindung an der Mesomerie des Chelatliganden lässt sich wegen ihrer Bindungslänge ausschliessen. Ob dies auch für die Rh—S-(1)-Bindung zutrifft, kann aufgrund der oben angeführten Argumente nicht sicher entschieden werden. Bei einer starken Konjugation der Rh—S(1)-Bindung mit dem Rest des Chelatliganden wäre allerdings eine vollständige Planarität des Fünfrings zu erwarten.

Diskussion

Die vorliegenden Ergebnisse belegen, dass die Rhodium-CS₂-Komplexe II und III sich hinsichtlich ihrer Struktur nahtlos in die Reihe der bisher bekannten Metall-CS₂-Verbindungen einreihen. Obwohl II und III formal völlig analog zu dem von uns [2] dargestellten und näher untersuchten Kobaltkomplex C_5H_5 Co-(PMe₃)CS₂ (I) sind, zeigen sich in der Reaktivität doch deutliche Unterschiede. So besitzt II im Gegensatz zu I keine Neigung, zu ein- oder mehrkernigen Rh-CS-Verbindungen zu reagieren, die, wie andere Untersuchungen bewiesen haben [14], durchaus stabil sind. Im Unterschied zu I ist II jedoch zu einer Reaktion mit CS₂ fähig, die zu dem Metallaheterocyclus VI führt. Die Bildung von VI könnte im Sinn einer 1,3-dipolaren Addition der Rh-C-S-Einheit von II an eine der C=S-Doppelbindungen von CS₂ interpretiert werden.

Es wäre denkbar, dass die wesentlich geringere Bereitschaft von I zu einer solchen Addition auf sterische Einflüsse (kleinerer Atomradius des Kobalts im Vergleich zum Rhodium) zurückzuführen ist.

Die Fähigkeit von Metall—CS₂-Komplexen, als 1,3-Dipol zu agieren, ist von Yamazaki et al. [15] und kürzlich auch von Dixneuf et al. [16] am Beispiel von C₂(COOMe)₂ als Dipolarophil demonstriert worden. Metall—CO₂-Komplexe sind dazu wahrscheinlich ebenfalls in der Lage. Herskovitz und Guggenberger [17] haben als Produkt der Umsetzung von IrCl(C₈H₁₄)(PMe₃)₃ mit CO₂ eine Verbindung der Zusammensetzung IrCl(C₂O₄)(PMe₃)₃ isoliert, in der, wie die Kristallstrukturanalyse gezeigt hat, ein dem RhSCSC- analoger IrOCOC-Metallaheterocyclus vorliegt.

Experimentelles

Alle Arbeiten wurden unter Luftabschluss mit gereinigtem Stickstoff als Inertgas durchgeführt. Die Darstellung der Ausgangskomplexe C₃H₅Rh(PMe₃)₂ [9], $C_5H_5Rh(C_2H_4)PMe_3$ und $C_5H_5Rh(C_2H_4)PMe_3Ph[10]$ erfolgte nach Literaturangaben.

$C_5H_5Rh(PMe_3)CS_2$ (II)

(a) aus $C_5H_5Rh(PMe_3)_2$: Eine Lösung von 285 mg (0.89 mMol) C_5H_5Rh -(PMe₃)₂ in 5 ml Ether wird mit 1 ml (16.7 mMol) CS₂ versetzt und 3 Std. bei Raumtemperatur gerührt. Zur Abtrennung des entstandenen Niederschlages wird über eine G3-Fritte filtriert und von dem Filtrat das Solvens im Vakuum entfernt. Der feste Rückstand wird aus THF/Pentan umkristallisiert. Ausbeute 30 mg (11%). Dunkelrote luftstabile Kristalle. Smp. 124°C (Zers.).

(b) aus $C_5H_5Rh(C_2H_4)PMe_3$: Eine Lösung von 244 mg (0.9 mMol) C₄H₅Rh- $(C_2H_4)PMe_3$ in 10 ml Benzol wird mit 1 ml (16.7 mMol) CS₂ versetzt und 6 Std. bei 50°C gerührt. Es tritt dabei eine Farbänderung von Gelbbraun nach Tiefrot ein. Nach Abkühlen auf Raumtemp. filtriert man die Lösung über eine mit Filterflocken bedeckte G3-Fritte, zieht das Solvens im Vakuum ab und kristallisiert aus THF/Pentan um. Ausb. 230 mg (81%). (Gef.: C, 33.94; H, 4.61; Rh, 31.89. C₉H₁₄PRhS₂ ber.: C, 33.76; H, 4.41; Rh, 32.14%.)

$C_5H_5Rh(PMe_2Ph)CS_2$ (III)

Die Darstellung erfolgt analog wie oben für II unter (b) beschrieben, doch wird die Benzollösung von C5H5Rh(C2H4)PMe2Ph und CS28 Std. bei 70°C gerührt. Nach Lösen des Rückstandes in THF und Zugabe von Pentan erhält man ein rotes Ol. Ausb. 60%. (Gef.: C. 44.25; H. 4.56; Rh. 26.42; S. 16.35. $C_{14}H_{16}PRhS_2$ ber.: C, 43.87; H, 4.21; Rh, 26.85; S, 16.73%.)

INTRAMOL	EKULARE ABSTA	NDE (in pm) UND WINK	EL (in Grad)	
Rh—C(2)	203.5(14)	PRhC(2)	87.4(4)	
Rh-S(1)	230.9(4)	P-Rh-S(1)	91.5(1)	
Rh-P	225.5(4)	C(2)—Rh—S(1)	87.1(4)	
Rh-C(3)	218.9(18)	•		
Rh-C(4)	222.8(18)	RhC(2)S(4)	121.7(8)	
Rh—C(5)	225.2(14)	Rh-C(2)-S(3)	122.6(8)	
Rh-C(6)	222.8(18)	S(3)-C(2)-S(4)	115.2(9)	
Rh-C(7)	223.1(23)	C(2)-S(4)-C(1)	105.1(7)	
		S(4)-C(1)-S(1)	120.0(9)	
		S(4)-C(1)-S(2)	117.8(9)	
C(2)-S(3)	165.0(15)	S(1)-C(1)-S(2)	122.2(9)	
C(2)-S(4)	168.4(15)	C(1)-S(1)-Rh	105.6(6)	
C(1)—S(4)	171.3(15)			
C(1)-S(2)	168.4(15)	Rh-P-C(10)	119.2(5)	
C(1)-S(1)	168.8(15)	. RH-P-C(11)	112.5(6)	
		Rh -P -C(12)	114.3(6)	
PC(10)	179.9(15)			
P-C(11)	177.6(17)			
P-C(12)	179.1(17)			

TABELLE 4

ADE ADORANDE (

$C_5H_5(PMe_3)Rh(SCS)Cr(CO)_5$ (IV)

Eine Lösung von 240 mg (1.1 mMol) $Cr(CO)_6$ in 100 ml THF wird mit einer Quecksilberdampflampe (Philips HPK 125 W) bis zur Beendigung der Gasentwicklung bestrahlt und danach mit 320 mg (1 mMol) II versetzt. Die resultierende Lösung wird 4 Std. bei Raumtemperatur gerührt, das Solvens im Vakuum entfernt und überschüssiges $Cr(CO)_6$ am Hochvakuum absublimiert. Der Rückstand wird in THF aufgenommen, die Lösung über Filterflocken filtriert und das Produkt durch Zugabe von Hexan ausgefällt. Nach Umkristallisation aus THF/Hexan erhält man dunkelrote luftbeständige Kristalle. Ausbeute 322 mg (63%). Smp. 120°C (Zers.). (Gef.: C, 32.61; H, 2.94; Cr, 10.00; Rh, 20.24. $C_{14}H_{14}CrO_5PRhS_2$ ber.: C, 32.82; H, 2.76; Cr, 10.15; Rh, 20.09%.)

$C_5H_5(PMe_3)Rh(SCS)Mn(CO)_2C_5H_5(V)$

Eine Lösung von 253 mg (1.24 mMol) $C_5H_5Mn(CO)_3$ in 100 ml THF wird bis zum Ende der Gasentwicklung bestrahlt und danach mit 320 mg (1 mMol) II versetzt. Nach 20-stdg. Rühren bei Raumtemp. wird das Solvens im Vakuum entfernt. Es verbleibt ein öliger Rückstand, aus dem das noch vorhandene $C_5H_5Mn(CO)_3$ am Hochvakuum absublimiert wird. Danach wird in Benzol aufgenommen, die Lösung über Filterflocken filtriert und das Produkt durch Zugabe von Hexan ausgefällt. Nach Umkristallisation aus Benzol/Hexan erhält man schwarze Kristalle. Ausbeute 224 mg (45%). Smp. 109°C (Zers.). (Gef.: C, 38.42; H, 4.03; Mn, 11.23; Rh, 20.52. $C_{16}H_{19}MnO_2PRhS_2$ ber.: C, 38.72; H, 3.86; Mn, 11.88; Rh, 20.74%.)

$C_{5}H_{5}Rh(PMe_{3})C_{2}S_{4}$ (VI)

Es wird wie oben für die Darstellung von II nach (b) beschrieben, verfahren, allerdings für die gleiche Menge der Ausgangsverbindungen nur 5 ml Benzol als Solvens verwendet und in einem geschlossenen Schlenkrohr gearbeitet. Der resultierende Überdruck wird durch Offnen des Hahnes nach jeweils 30-minütigem Rühren abgelassen und nach 6 Std. die Lösung über eine G3-Fritte (ohne Filterflocken) filtriert. Der auf der Fritte verbleibende Rückstand wird mehrmals mit Benzol gewaschen und zweimal aus CH_2Cl_2/Et_2O umkristallisiert. Man erhält hellrote luftbeständige Kristalle. Wie ein Dünnschichtchromatogramm (SiO₂, CH_2Cl_2 als Laufmittel) zeigt, handelt es sich bei dem Produkt um eine einheitliche Verbindung. Ausbeute 10%. Smp. 120–122°C. (Gef.: C, 30.40; H, 3.58; Rh, 25.80. $C_{10}H_{14}PRhS_4$ ber.: C, 30.40; H, 3.56; Rh, 25.96%).

Aus dem Filtrat kann II in ca. 80% iger Ausbeute isoliert werden.

Massenspektren (Varian MAT CH 7; 70 eV)

II: $m/e(I_r)$ 320 (17; M^+), 288 (16; $C_5H_5Rh(PMe_3)CS^+$), 244 (100; $C_5H_5RhPMe_3^+$ und/oder $C_5H_5RhCS_2^+$), 212 (26; $C_5H_5RhCS^+$), 179 (9; RhPMe₃⁺ und/oder RhCS₂⁺), 168 (46; $C_5H_5Rh^+$), 147 (23; RhCS⁺).

III: $m/e(I_r)$ 382 (1; M^*), 350 (35; C₅H₅Rh(PMe₂Ph)CS⁺), 306 (100; C₅H₅RhPMe₂Ph⁺).

IV: $m/e(I_r)$ 512 (1; M^*), 428 (1; -3 CO), 400 (1; -4 CO), 372 (2; -5 CO), 320 (1; $C_5H_5Rh(PMe_3)CS_2^*$), 288 (9; $C_5H_5Rh(PMe_3)CS^*$), 272 (30; $C_5H_5Rh(PMe_3)CO^*$), 244 (67; $C_5H_5RhPMe_3^*$ und/oder $C_5H_5RhCS_2^*$), 212 (3; $C_5H_5RhCS^*$), 196 (20; $C_5H_5RhCO^*$), 168 (100; $C_5H_5Rh^*$). V: $m/e(I_r)$ 496 (1; M^*), 440 (2; -2 CO), 320 (2; $C_5H_5Rh(PMe_3)CS_2^*$), 288 (7; $C_5H_5Rh(PMe_3)CS^*$), 244 (38; $C_5H_5RhPMe_3^*$ und/oder $C_5H_5RhCS_2^*$), 220 (11; $C_5H_5Mn(CO)_2CS^*$), 212 (14; $C_5H_5RhCS^*$), 204 (46; $C_5H_5Mn(CO)_3^*$), 192 (2; $C_5H_5Mn(CO)CS^*$), 176 (16; $C_5H_5Mn(CO)_2^*$), 168 (30; $C_5H_5Rh^*$), 164 (25; $C_5H_5MnCS^*$), 148 (54; $C_5H_5MnCO^*$), 120 (100; $C_5H_5Mn^*$).

VI: $m/e(I_r)$ 396 (8; M^*), 352 (5; $C_5H_5Rh(PMe_3)CS_3^*$), 320 (45; $C_5H_5Rh-(PMe_3)CS_2^*$), 288 (100; $C_5H_5Rh(PMe_3)CS^*$), 244 (100; $C_5H_5RhPMe_3^*$ und/oder $C_5H_5RhCS_2^*$), 212 (100; $C_5H_5RhCS^*$), 179 (55; RhPMe₃* und/oder RhCS₂*), 168 (100; $C_5H_5Rh^*$), 147 (61; RhCS*).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die grosszügige Unterstützung mit Sachmitteln, Frau Dr. G. Lange für die Massenspektren sowie Frau E. Ullrich und Frl. R. Schedl für Elementaranalysen. Den Firmen BASF und Degussa sind wir für wertvolle Chemikalienspenden ebenfalls zu Dank verbunden.

Literatur

- 1 H. Werner, K. Leonhard, O. Kolb, E. Röttinger und H. Vahrenkamp, Chem. Ber., im Druck.
- 2 H. Werner, K. Leonhard und Ch. Burschka, J. Organometal. Chem., 160 (1978) 291.
- 3 O. Kolb, Diplomarbeit Univ. Würzburg, 1979.
- 4 I.S. Butler, N.J. Coville und D. Cozak, J. Organometal. Chem., 133 (1977) 59; M. Herberhold und M. Süss-Fink, Chem. Ber., 111 (1978) 2273.
- 5 K. Leonhard und H. Werner, Angew. Chem., 89 (1977) 656; Angew. Chem. Int. Ed. Engl., 16 (1977) 649.
- 6 H. Werner und K. Leonhard, Angew. Chem., 91 (1979) 663; Angew. Chem. Int. Ed. Engl., 18 (1979) 627.
- 7 H. Yamazaki und N. Hagihara, Bull. Chem. Soc. Japan, 44 (1971) 2260.
- 8 Y. Wakatsuki und H. Yamazaki, J. Organometal. Chem., 64 (1974) 393.
- 9 H. Werner, R. Feser und W. Buchner, Chem. Ber., 112 (1979) 834.
- 10 R. Feser, Diplomarbeit Univ. Würzburg, 1977.
- 11 H. Werner und R. Feser, Angew. Chem., 91 (1979) 171; Angew. Chem. Int. Ed. Engl., 18 (1979) 157.
- 12 M. Herberhold, M. Süss-Fink und C.G. Kreiter, Angew. Chem., 89 (1977) 191; Angew. Chem. Int. Ed. Engl., 16 (1977) 193.
- 13 P.J. Vergamini und P.G. Eller, Inorg. Chim. Acta, 34 (1979) L291.
- 14 H. Werner und O. Kolb, Angew. Chem., 91 (1979) 930; Angew. Chem. Int. Ed. Engl., 18 (1979) 865.
- 15 Y. Wakatsuki, H. Yamazaki und H. Iwasaki, J. Amer. Chem. Soc., 95 (1973) 5781.
- 16 H. Le Bozec, A. Gorgues und P. Dixneuf, Chem. Commun., (1978) 573.
- 17 T. Herskovitz und L.J. Guggenberger, J. Amer. Chem. Soc., 98 (1976) 1615.
- 18 R.G. Gastinger, M.D. Rausch, D.A. Sullivan und G.J. Palenik, J. Organometal. Chem., 117 (1976) 355.
- 19 P.G.H. Troughton und A.C. Skapski, Chem. Commun., 1968, 575.
- 20 M.R. Churchill, Inorg. Chem., 4 (1965) 1734.
- 21 Chien-Hong Cheng, B.D. Spivak und R. Eisenberg, J. Amer. Chem. Soc., 99 (1977) 3003 und zit. Lit.
- 22 Chien-Hong Cheng, D.E. Hendriksen und R. Eisenberg, J. Organometal. Chem., 142 (1977) C65.
- 23 M. Cowie und J.A. Ibers, Inorg. Chem., 15 (1976) 552.
- 24 K. Itoh, I. Matsuda, F. Ueda, Y. Ishii und J.A. Ibers, J. Amer. Chem. Soc., 99 (1977) 2118.
- 25 B. Bak, D. Christensen, L. Hanson-Nygaard und J. Rastrup-Anderson, J. Mol. Spectrosc., 7 (1961) 58.